Quantum interference measurement of spin interactions in a bio-organic/semiconductor device structure

نویسندگان

  • Vincent Deo
  • Yao Zhang
  • Victoria Soghomonian
  • Jean J. Heremans
چکیده

Quantum interference is used to measure the spin interactions between an InAs surface electron system and the iron center in the biomolecule hemin in nanometer proximity in a bio-organic/semiconductor device structure. The interference quantifies the influence of hemin on the spin decoherence properties of the surface electrons. The decoherence times of the electrons serve to characterize the biomolecule, in an electronic complement to the use of spin decoherence times in magnetic resonance. Hemin, prototypical for the heme group in hemoglobin, is used to demonstrate the method, as a representative biomolecule where the spin state of a metal ion affects biological functions. The electronic determination of spin decoherence properties relies on the quantum correction of antilocalization, a result of quantum interference in the electron system. Spin-flip scattering is found to increase with temperature due to hemin, signifying a spin exchange between the iron center and the electrons, thus implying interactions between a biomolecule and a solid-state system in the hemin/InAs hybrid structure. The results also indicate the feasibility of artificial bioinspired materials using tunable carrier systems to mediate interactions between biological entities.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic Properties of Nanocrystalline Pb1 xMnxSe

Mn-doped diluted magnetic semiconductors are important semiconductor materials and have received much attention due to their application in magnetooptics, spintronics, displays, and lasers. The authors present the magnetic properties of Mn-doped PbSe nanocrystals (NCs) based on electron paramagnetic resonance and superconducting quantum interference device measurements, demonstrating that the e...

متن کامل

Controlling Decoherence of Transported Quantum Spin Information in Semiconductor Spintronics

We investigate quantum coherence of electron spin transported through a semiconductor spintronic device, where spins are envisaged to be controlled by electrical means via spinorbit interactions. To quantify the degree of spin coherence, which can be diminished by an intrinsic mechanism where spin and orbital degrees of freedom become entangled in the course of transport involving spin-orbit in...

متن کامل

Quantum Interference Control of Ballistic Magneto- resistance in a Magnetic Nanowire Containing Two Atomic- Size Domain Walls

The magnetoresistance of a one-dimensional electron gas in a metallic ferromagnetic nanowire containing two atomic-size domain walls has been investigated in the presence of spin-orbit interaction. The magnetoresistance is calculated in the ballistic regime, within the Landauer-Büttiker formalism. It has been demonstrated that the conductance of a magnetic nanowire with double domain walls...

متن کامل

Effect of PbS Film Thickness on the Performance of Colloidal Quantum Dot Solar Cells

Colloidal quantum dots offer broad tuning of semiconductor band structure via the quantum size effect. In this paper, we present a detailed investigation on the influence of the thickness of colloidal lead sulfide (PbS) nanocrystals (active layer) to the photovoltaic performance of colloidal quantum dot solar cells. The PbS nanocrystals (QDs) were synthesized in a non-coordinating solvent, 1-oc...

متن کامل

QUANTUM COMPUTING IN SEMICONDUCTOR STRUCTURES WITH 0.1 μm SEPARATION OF NUCLEAR- SPIN QUBITS

Nuclear-spin qubit interactions in a heterostructure can be mediated via the bound outer electrons of impurity atoms whose nuclear spins 1/2 are the qubits. These outer electrons, in turn, interact via the two-dimensional electron gas in the quantum Hall effect regime. We devised a quantum computing scheme, based on this mechanism, with qubit separation of order 0.1 μm, attainable with the pres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015